Framework Integration
PrecogX provides seamless integration with all major AI frameworks. Choose your framework below to get started with comprehensive AI agent security monitoring.
🚀 Quick Start
Choose your framework below to get started:
- LangChain Integration - Most popular AI framework
- AutoGen Integration - Multi-agent conversations
- CrewAI Integration - Team-based AI agents
- Basic SDK Integration - Direct API integration
📋 Integration Overview
PrecogX provides seamless integration with all major AI frameworks:
What We Monitor:
- ✅ Prompts & Responses - Every AI interaction
- ✅ Tool Calls - Function executions and parameters
- ✅ Agent Behavior - Patterns and anomalies
- ✅ Security Events - Threats and violations
What We Detect:
- 🛡️ Prompt Injection - Attempts to manipulate AI behavior
- 🔒 PII Leakage - Sensitive data exposure
- 🚫 Content Moderation - Inappropriate content
- 🔗 Malicious Links - Suspicious URLs and domains
- ⚠️ Tool Abuse - Dangerous function calls
- 📊 Behavioral Drift - Unexpected agent behavior
What You Get:
- 📈 Real-time Trust Scores - Dynamic agent reliability
- 🔔 Instant Alerts - Slack, Teams, or webhook notifications
- 📊 Analytics Dashboard - Comprehensive insights
- 👥 Human-in-the-Loop - Manual validation when needed
🔧 Installation
Python SDK
pip install precogx-sdk
Framework-Specific Extensions
# LangChain support
pip install "precogx-sdk[langchain]"
# AutoGen support
pip install "precogx-sdk[autogen]"
# CrewAI support
pip install "precogx-sdk[crewai]"
JavaScript SDK
npm install @precogx/sdk
LangChain Integration
The most popular AI framework with seamless callback integration.
Perfect for:
- Chatbots and conversational AI
- Document processing and analysis
- Tool-using agents
- RAG (Retrieval-Augmented Generation) systems
Key Features:
- Automatic callback integration
- Session tracking
- Tool call monitoring
- Conversation context preservation
Installation
pip install "precogx-sdk[langchain]"
Basic Usage
from langchain.agents import initialize_agent
from precogx_langchain import PrecogXCallbackHandler
# Initialize with PrecogX monitoring
agent = initialize_agent(
tools=[...],
llm=...,
callbacks=[PrecogXCallbackHandler(api_key="your_key")]
)
# Every interaction is automatically monitored
agent.run("What's the weather in New York?")
Advanced Configuration
from precogx_langchain import PrecogXCallbackHandler
# Configure with custom settings
handler = PrecogXCallbackHandler(
api_key="your_api_key",
agent_id="my-langchain-agent",
enable_tool_monitoring=True,
enable_behavior_tracking=True
)
# Use with any LangChain agent
agent = initialize_agent(
tools=[...],
llm=...,
callbacks=[handler]
)
Tool Monitoring
from langchain.tools import Tool
from precogx_langchain import PrecogXCallbackHandler
# Define tools with security monitoring
def dangerous_function(query: str) -> str:
# This will be monitored for tool abuse
return f"Executed: {query}"
tool = Tool(
name="dangerous_function",
description="A potentially dangerous function",
func=dangerous_function
)
# PrecogX will monitor all tool calls
agent = initialize_agent([tool], llm, callbacks=[handler])
AutoGen Integration
Multi-agent conversation framework with advanced monitoring.
Perfect for:
- Multi-agent conversations
- Agent-to-agent interactions
- Complex workflows
- Collaborative AI systems
Key Features:
- Multi-agent monitoring
- Conversation flow analysis
- Role-based security rules
- Group dynamics tracking
Installation
pip install "precogx-sdk[autogen]"
Basic Usage
from autogen import AssistantAgent, UserProxyAgent
from precogx_sdk import PrecogXClient
# Monitor multi-agent conversations
client = PrecogXClient(api_key="your_key")
# Every agent interaction is tracked
assistant = AssistantAgent(name="assistant")
user_proxy = UserProxyAgent(name="user_proxy")
# Conversation automatically monitored
user_proxy.initiate_chat(assistant, message="Hello!")
Multi-Agent Monitoring
from autogen import AssistantAgent, UserProxyAgent, GroupChat
from precogx_sdk import PrecogXClient
client = PrecogXClient(api_key="your_key")
# Create multiple agents
assistant1 = AssistantAgent(name="assistant1")
assistant2 = AssistantAgent(name="assistant2")
user_proxy = UserProxyAgent(name="user_proxy")
# Group chat with monitoring
group_chat = GroupChat(
agents=[assistant1, assistant2, user_proxy],
messages=[],
max_round=10
)
# All agent interactions are monitored
user_proxy.initiate_chat(group_chat, message="Let's discuss AI security")
Role-Based Security
from precogx_sdk import PrecogXClient
client = PrecogXClient(api_key="your_key")
# Configure different security rules per agent type
assistant = AssistantAgent(
name="assistant",
system_message="You are a helpful assistant. Be careful with sensitive data."
)
# PrecogX will apply different security rules based on agent role
CrewAI Integration
Team-based AI agents with comprehensive monitoring.
Perfect for:
- AI teams and crews
- Task delegation systems
- Workflow automation
- Collaborative projects
Key Features:
- Team-level monitoring
- Task execution tracking
- Workflow analysis
- Performance metrics
Installation
pip install "precogx-sdk[crewai]"
Basic Usage
from crewai import Agent, Task, Crew
from precogx_sdk import PrecogXClient
# Monitor entire AI teams
client = PrecogXClient(api_key="your_key")
# Team collaboration tracked
researcher = Agent(role="Researcher", goal="Find information")
writer = Agent(role="Writer", goal="Write content")
crew = Crew(agents=[researcher, writer], tasks=[...])
result = crew.kickoff() # All interactions monitored
Task-Level Monitoring
from crewai import Agent, Task, Crew
from precogx_sdk import PrecogXClient
client = PrecogXClient(api_key="your_key")
# Define agents with specific roles
researcher = Agent(
role="Researcher",
goal="Find accurate information",
backstory="You are a research expert"
)
writer = Agent(
role="Writer",
goal="Create engaging content",
backstory="You are a content writer"
)
# Define tasks with monitoring
research_task = Task(
description="Research AI security trends",
agent=researcher
)
writing_task = Task(
description="Write a blog post about AI security",
agent=writer,
dependencies=[research_task]
)
# All task executions are monitored
crew = Crew(agents=[researcher, writer], tasks=[research_task, writing_task])
result = crew.kickoff()
Basic SDK Integration
Direct API integration for custom implementations.
Perfect for:
- Custom AI frameworks
- Proprietary systems
- Direct API control
- Flexible implementations
Key Features:
- Full API access
- Custom integration points
- Manual control
- Framework agnostic
Installation
pip install precogx-sdk
Basic Usage
from precogx_sdk import PrecogXClient
# Initialize client
client = PrecogXClient(api_key="your_api_key")
# Send telemetry data
client.send_telemetry({
"agent_id": "my-custom-agent",
"prompt": "What's the weather?",
"response": "It's sunny today.",
"metadata": {
"model": "gpt-4",
"platform": "custom",
"version": "1.0.0"
}
})
Advanced Usage
from precogx_sdk import PrecogXClient
client = PrecogXClient(api_key="your_api_key")
# Monitor custom AI function
def my_ai_function(prompt: str) -> str:
# Your AI logic here
response = process_prompt(prompt)
# Send telemetry
client.send_telemetry({
"agent_id": "custom-agent",
"prompt": prompt,
"response": response,
"metadata": {
"model": "custom-model",
"platform": "custom-framework",
"session_id": "session-123"
}
})
return response
Tool Call Monitoring
from precogx_sdk import PrecogXClient
client = PrecogXClient(api_key="your_api_key")
# Monitor tool calls
def dangerous_tool_call(parameters: dict) -> str:
# Send tool call telemetry
client.send_telemetry({
"agent_id": "my-agent",
"tool_calls": [{
"name": "dangerous_tool",
"arguments": parameters
}],
"metadata": {
"tool_risk_level": "high"
}
})
# Execute tool
return execute_tool(parameters)
🔍 Monitoring Examples
LangChain Agent
from langchain.agents import initialize_agent
from precogx_langchain import PrecogXCallbackHandler
# Initialize with PrecogX monitoring
agent = initialize_agent(
tools=[...],
llm=...,
callbacks=[PrecogXCallbackHandler(api_key="your_key")]
)
# Every interaction is automatically monitored
agent.run("What's the weather in New York?")
AutoGen Conversation
from autogen import AssistantAgent, UserProxyAgent
from precogx_sdk import PrecogXClient
# Monitor multi-agent conversations
client = PrecogXClient(api_key="your_key")
# Every agent interaction is tracked
assistant = AssistantAgent(name="assistant")
user_proxy = UserProxyAgent(name="user_proxy")
# Conversation automatically monitored
user_proxy.initiate_chat(assistant, message="Hello!")
CrewAI Team
from crewai import Agent, Task, Crew
from precogx_sdk import PrecogXClient
# Monitor entire AI teams
client = PrecogXClient(api_key="your_key")
# Team collaboration tracked
researcher = Agent(role="Researcher", goal="Find information")
writer = Agent(role="Writer", goal="Write content")
crew = Crew(agents=[researcher, writer], tasks=[...])
result = crew.kickoff() # All interactions monitored
🛡️ Security Features
Real-Time Protection
- Instant Detection: Threats identified in milliseconds
- Automatic Blocking: Dangerous actions prevented
- Human Validation: Ambiguous cases sent for review
- Audit Trail: Complete history of all events
Advanced Analytics
- Trust Scoring: Dynamic agent reliability metrics
- Behavioral Analysis: Pattern recognition and anomalies
- Threat Intelligence: Up-to-date threat detection
- Performance Metrics: Efficiency and security insights
Compliance & Governance
- SOC2 Compliance: Enterprise-grade security
- HIPAA Support: Healthcare data protection
- Audit Logging: Complete event history
- Role-Based Access: Team permission management
📞 Support
Need help with integration?
- Documentation: Comprehensive guides for each framework
- Examples: Real-world implementation examples
- Community: Join our Discord for help
- Support: Email us at support@precogx.ai
🚀 Next Steps
- Choose your framework from the guides above
- Follow the integration steps in your chosen guide
- Test your implementation with our demo scenarios
- Monitor your agents in the dashboard
- Configure alerts for security events
Ready to secure your AI agents? Choose your framework and let's get started! 🛡️